
Including Sustainability Criteria into the Multi-Supplier Newsvendor Problem:
An MCDM and Bi-Objective Optimization Approach

Ali Cheaitoua∗ Rima Cheaytou

aSEAM Research Group and Industrial Engineering and Engineering

Management Department, College of Engineering, University of Sharjah,

P. O. Box 27272, Sharjah, United Arab Emirates, Tel.: +971(0) 6 505 3921,

Fax: +971(0) 6 505 3963, Email: acheaitou@sharjah.ac.ae,

ali.cheaitou@centraliens.net

Abstract

We develop a single product single-period inventory control model with stochastic de-
mand, in which a retailer buys, at the beginning of the single-period, a quantity of a perish-
able product from one or more than one supplier with limited capacity. The end customers’
random demand that should be satisfied by the retailer is concentrated in a single period
selling season during which every satisfied demand is charged a certain price by the re-
tailer. At the end of the selling season, any remaining units are salvaged by the retailer at
a salvage value and any unsatisfied demands incur a penalty shortage cost.

The problem is modeled using a bi-objective optimization framework. First, fuzzy TOP-
SIS is used in order to measure the closeness coefficients of all the available suppliers
based on pre-determined sustainability criteria, that include green ones, such as the geo-
graphical distance between the production site of the supplier and the site of the retailer’s
warehouses, and social criteria such as the impact of the production activities on the local
society. AHP is then used in order to determine the importance weights of the green and
social penalty shortage and customer satisfaction coefficients. Furthermore, we model two
independent multi-supplier newsvendor problems: a cost based sub-problem and a sus-
tainability (green and social) based sub-problem. We solve each of these sub-problems
analytically and we exhibit the structure of the optimal policy and therefore the optimal
quantity to order from each supplier in both cases. We use then the comprehensive cri-
terion method in order to solve the bi-objective model and we exhibit the structure of its
optimal policy and the Pareto optimal solutions.

Furthermore, through a numerical study, we analyze the effect of some of the model
parameters on the optimal policy and on the Pareto solutions. More particularly, we in-
vestigate the relative weight of the different criteria, the randomness of the demand, the
difference in the costs between the supply options and the other economic parameters.

Keywords: : multi-supplier newsvendor, green and social sustainability, bi-objective
optimization, MCDM, short life-cycle products.

1 Introduction
The newsvendor problem is a well studied single-period inventory control problem that aims
at choosing the best ordering quantity of a single product usually with short life-cycle (Khouja,
1999). In a newsvendor problem, a retailer orders, before the beginning of a single period
selling season, and usually from a single supplier, a quantity of a product to be used to satisfy
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the end customers’ demand during the selling season. Each satisfied demand is charged a
fixed price. Moreover, at the end of the selling season, each unsatisfied demand is lost and a
corresponding penalty cost is incurred, and each unsold item is salvaged at a salvage price.
Many extensions to the newsvendor problem exist in the related literature such as the ones
with information updating (Cheaitou and Cheaytou, 2018), or with two ordering opportunities
(Cheaitou et al., 2014). Another angle from which the newsvendor problem has been addressed
is the consideration of a multiple suppliers. Recently, with the increase in the interest of the
business organizations and the awareness of the society about the sustainability of the business
activities, and more particularly the impact on the environment, researchers started introducing
some environmental and social aspects in the inventory control models in general and in the
newsvendor model in particular. Motivated by this increasing interest, we develop in this paper
a multiple supplier framework for a newsvendor type problem, in which we consider, in addition
to the economic performance, environmental and social aspects based on which the retailer can
choose the best supplier(s) from which the orders can be places and their corresponding optimal
quantities. To achieve this objective, we develop a bi-objective optimization framework in which
the first objective aims to maximize the retailer’s profit and the second the sustainability value of
the purchased products. We characterize the complete structure of the optimal policy of the two
single objective sub-problems and of the bi-objective problem using the Karush-Khun-Tucker
conditions. Moreover, we implement the obtained optimal policy using Wolfram Mathematica
and we obtain some managerial insights based on the numerical study. The reminder of this
paper is structured as follows: Section 2 reviews the related literature. Section 3 provides the
model description while Section 4 develops the model solution and analysis approach. Section
5 is dedicated to the numerical analysis of the proposed approach while Section 6 provides
concluding remarks.

2 Literature review
The literature review can be classified mainly into two areas which are related to this work. The
first category includes the works on Newsvendor models with multiple suppliers. The second
category conducts a literature review on the environmental stainability in inventory problems.

In the real-life, many products, especially the goods such as books, candy, food, electronics
are seasonal products (Mostard et al., 2005 ; Yao et al., 2005b ) with a short life cycles. One
of the classical single-period model in inventory control literature that fits this type of situation is
the well-known newsvendor model. The single period-model consists of a retailer who orders a
quantity of products from a supplier at the beginning of the selling season at a certain unit cost,
which is delivered immediately in order to satisfy the uncertain end-customer demand. During
the selling season, any satisfied demand is charged a unit price and any unsatisfied demand is
lost and a lost sales cost is incurred. At the end of the selling season, any remaining units are
salvaged at a salvage value which is less than the original price charged to the customers. The
classical newsvendor model, where there is a relationship between a single/multiple retailer (or
buyer) and single supplier, has obtained widespread attention in the literature (for exhaustive
reviews on this topic, please refer to Porteus, 1990 ; Khouja, 1999; , Qin et al., 2011; and Choi,
2012; ) and some extensions have been introduced to improve the model.

One of these extension is to include multiple suppliers in the newsvendor model. The first
work dealing with multiple suppliers is that done by Agrawal and Nahmias (1997). They as-
sumed that demand is deterministic, suppliers are unreliable and a fixed order cost is incurred
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for each supplier with a positive order. A group of works has also investigated the case of multi-
ple suppliers including the scenario of unreliable suppliers (see, e.g. Chen et al., 2001; Babich
et al., 2007; Yang et al., 2007;Dada et al., 2007; Burke et al., 2009; Merzifonluoglua and Fengb,
2014; van Delft and Vial, 2015; Park and Lee, 2016; Hu and Su, 2018). Minner (2003) offers a
survey of research on multiple supplier inventory models in supply chain management.

Since one of the main characteristics of the model proposed in our paper is the newsvendor
problem with multiple suppliers, we now focus on the previous works most closely related to our
issue. In fact, Dada et al., (2007) study a newsvendor who procures from multiple suppliers,
of whom some are unreliable. They show that the cost and the reliability impact the optimal
ordering quantities in different manners: no order will be made by the retailer when he faces
suppliers with excessive costs, and this is no matter the reliability level. On the contrary, some
order will be made by the retailer when he faces suppliers with low costs, but the size of the order
depends on their reliability. Burke et al., (2009) have pointed out the same result. Merzifonluoglu
and Feng, (2014) show that cost might not be the order qualifier if there is a fixed ordering cost.

Another extension to the newsvendor model belongs to the category of green or sustainable
inventory in which environmental and social aspects are added to the traditional inventory prob-
lems. Arikan and Jammernegg (2014) consider the single period inventory model with product
carbon foot print constraint. They specify an upper bound for the carbon foot print as a bench-
mark derived either from the company’s environmental target or from an industry standard. Sel
et al., (2017) study the planning and scheduling of food production-distribution operations with
environmental and social concerns in addition to economical ones. Tsao et al. (2017) study the
newsvendor models that take into account carbon emissions, trade credit, and product recycling,
in which the credit period affects the risk of default with uncertain demand. They determine
the optimal ordering quantity, credit period, and recycle price in order to maximize total prof-
its. Konur et al. (2017) analyze an integrated inventory management and delivery scheduling
problem in a stochastic demand environment with economic and environmental considerations.
They use a bi-objective continuous review inventory control model with order splitting among
multiple suppliers using two different delivery scheduling policies: sequential splitting and se-
quential delivery. Ma et al., (2018) study an issue of dynamic procurement planning under the
carbon tax in a supply chain. A manufacturer needs to select appropriate suppliers to satisfy the
random demand. The authors study therefore two problems: how to make the optimal decision
on order quantity and how to select appropriate suppliers for a manufacturer, in consideration
of a carbon tax.

Other papers addressed the sustainable or the green inventory or supply problem with differ-
ent objectives such as Mafakheri et al. (2011), Gavronski et al. (2011), MirzapourAl-e-hashem
and Rekik (2014), Seroka-Stolka (2016), Garcia-Alvarado et al. (2017), and Tang et al. (2018).

To the best of our knowledge, none of the papers discussed above has considered a multiple
supplier newsvendor framework with consideration of the sustainability aspects and a complete
characterization of the optimal policy which this paper does.

3 Model description
We consider a single product single-period bi-objective model for identifying the best order-
ing policy for a retailer (or decision maker or vendor) served by multiple suppliers subject to
individual production capacities and faced with a stochastic demand. The model aims to deter-
mine the best suppliers to buy from and the amount that should be ordered from each selected
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supplier, taking into account two criteria: the cost criteria of each supplier and the sustainabil-
ity criteria including green and social criteria. Thus, the model consists of three stages: the
single-objective cost problem, the single-objective sustainability problem and the bi-objective
optimization problem.

Suppose there are n suppliers from which the retailer can source. For the retailer, let p be
the unit selling price of an item, s the unit salvage value for any remaining items at the end of
selling season, and π the unit penalty shortage cost for every unsatisfied demand. Let ci be the
cost owed to supplier i and Ki the production capacity of each supplier i. Finally, the probability
density function (PDF) and the cumulative density function (CDF) of the demand D are denoted
by f (D) and F(D) respectively.

First, in the single-objective cost problem, the retailer aims to maximize its expected profit
by choosing the vector of nonnegative order quantities Q = (Q1,Q2, ...,Qn) which constitutes
the decision variable of the vendor.

Second, the single-objective sustainability problem allows the retailer to select his suppliers
based on the supplier’s green and social performance. To this end, we use fuzzy TOPSIS
(introduced by Hwang and Yoon (1981)) to assign preference weights wi based on green and
social criteria for each supplier i (i = 1, ...,n). The assignment of the weights is based on the
available knowledge and expertise of the decision makers as well as the relative importance
of each criterion to the company. Decision makers can assign weights to the suppliers with
respect to the criteria using available historical data, the capability studies on the suppliers,
and laboratory testing and analysis of the product to be purchased (see CheaitouHamdan CIE,
COR).

In addition, the retailer uses AHP to assign an importance total weight (wGS) to the two
sets of criteria, namely, the set of green criteria and the set of social criteria. This total weight
includes the importance given by the company to selecting green or sustainable suppliers and
transporters. It also covers the importance to the company of the environmental impact of
disposal or salvage of the unsold products. It may result from the negative impact of unsold
product on the use of resources used in the manufacturing of the product or because of the
additional transportation of unsold products to a parallel market. Moreover, the decision maker
uses AHP to determine two another importance weights: the first importance weight is given
by the company to the negative impact of a shortage (πc) that may represent the perception
of decision makers of the negative impact on the companies image of shortage. The second
importance weight wc is given by the company to the positive impact of a satisfied customer on
the company’s image.

We define wGS
i also as the performance level (preference weight) of supplier i based on the

green and social criteria. It reflects the importance weight of the green and social aspects to the
company (wGS) as well as the relative performance of supplier i in the green and social aspects
compared to the other suppliers (wi). Finally, wGS

i can be expressed as

wGS
i = wGS ×wi, (1)

where wi is obtained from fuzzy TOPSIS based on the green and social criteria as mentioned
previously.

Remark 1 Note that πc and wc may have the same value. Moreover, it is worth noting that wGS,
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wc and πc are determined by pairwise comparison which is why we select AHP. This allows
the decision maker to gauge (compare) the green and social aspect of the inventory systems
management (wGS) with the customer satisfaction aspect (wc,πc) that reflects an economic
performance.

A summary of the notations used in our model are listed in Table 1.

Table 1: Summary of Notation.

n Total number of suppliers.

ci Cost per unit owed to supplier i.

p Selling price per unit charged by the buyer.

s Salvage value.

π Penalty cost of loss goodwill.

D Stochastic demand.

f (.) Probability density function (PDF) for demand.

F(.) Cumulative probability distribution function (CDF) for demand.

Qi Quantity ordered from supplier i.

∑n
i=1 Qi Total quantity ordered among the suppliers.

Q ≡ {Q1, ...,Qn} Vector of quantities ordered among the suppliers.

Ki Production capacity of supplier i.

wGS Total importance weight of the green and

social aspects obtained from AHP.

πc Importance weight given by the company to the negative

impact of a shortage.

wc Importance weight given by the company to the positive

impact of a satisfied customer on the company’s image.

wi Relative performance of supplier i based on the green and social

criteria from fuzzy TOPSIS.

wGS
i Performance level of supplier i based on the green and social

criteria. It can be expressed as: wGS
i = wGS ×wi.

5



4 Model analysis
4.1 Cost problem
In this section, we present the first stage represented by the cost problem which is equivalent
to the retailer’s problem taking into account the fact that he faces n suppliers with a capacity
production Ki for each supplier i. First, we show that the expected profit function is jointly
concave. Then, we analytically solve the retailer’s optimal decision problem and characterize its
solution. Subsequently, we determine the optimal quantities that the retailer should order from
supplier i (whether that be zero or not) and thus we derive the optimal ordering policy for all the
possible scenario that can be faced by the retailer.

Let us first denote by Q∗
i the optimal value of Qi and let us denote by Q∗={Q∗

i } the corre-
sponding vector of decision variables. As it is known in the newsvendor problem, the retailer
has to make decisions before the beginning of the selling season which is the case in this cost
model. In addition, the retailer has the possibility to order among n independent suppliers. His
first objective is to maximize the expected profit for the selling season denoted Π(Q) where

Π(Q) = p
∫ ∑n

i=1 Qi

0
D f (D)dD+ p

n

∑
i=1

Qi

∫ ∞

∑n
i=1 Qi

f (D)dD

+ s
∫ ∑n

i=1 Qi

0

 n

∑
i=1

Qi −D

 f (D)dD−
n

∑
i=1

ci Qi (2)

− π
∫ ∞

∑n
i=1 Qi

D−
n

∑
i=1

Qi

 f (D)dD.

The retailer’s optimization problem is then defined as

max Π(Q) (3)

subject to 0 ≤ Qi ≤ Ki for all i. (4)

Taking the derivative of (2) with respect to Qi (i = 1, ..,n), it yields

∂Π(Q)

∂Qi
= (p+π− ci)− (p+π− s)F

 n

∑
i=1

Qi

 , (5)

Setting the partial derivative (5) equal to zero, we obtain the threshold level associated with
supplier i where F−1 is the inverse cumulative distribution function (CDF) of demand:

Yi = F−1

(
p+π− ci

p+π− s

)
(6)

The question now is how much the retailer has to order from supplier i (i = 1, ...,n) (whether
that be zero or otherwise). To this end, we index the suppliers from the most to least expensive
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so that
c(n) > ... > c(i) > ... > c(1), (7)

where ci, denotes the unit order cost per received product from supplier i. The retailer chooses
then a per-unit selling price p with p > c(n). If the realized demand is less than the retailer’s
available stock, then the retailer has the option to return the leftovers at a per-unit salvage value
s with s < c(1).

By definition of Yi, the indexing (7) implies that

Y(n) < ... < Y(i) < ... < Y(1).

We prove in Proposition 1 that the expected objective function of the cost model is jointly
concave.

Proposition 1 The expected objective function Π(Q) defined in (2) is a jointly concave function
with respect to Qi, i = 1, ...,n.

Proof 1 The Hessian matrix of Π(Q) with respect to Qi (i = 1, ...,n) is the n×n matrix given by

HΠ(Q) =−(p+π− s) f (
n

∑
i=1

Qi)Jn (8)

where Jn is (n×n) matrix of ones.

For each vector
V = (V1, ...,Vn) ⊂ IRn,

we find

VT
(

HΠ(Q)
)

V =−(p+π− s) f (
n

∑
i=1

Qi)(
n

∑
i=1

Vi)
2.

Since s < π which means that (p+π− s)> 0, we have

VT
(

HΠ(Q)
)

V ≤ 0.

We conclude that the matrix HΠ(Q) is semi-definite negative. Consequently, the objective func-
tion Π(Q) is jointly concave with respect to Qi (i= 1, ...,n), which completes the proof. 2

4.1.1 Karush-Khun-Tucker conditions

In this part, we present the Karush-Khun-Tucker (KKT) conditions corresponding to the cost
problem. We will resort to these conditions to derive the optimal ordering policy.

Without loss of generality, we use in the equations below the index j instead of i in order not
to have any ambiguity in the proofs presented later.

Since we deal with a special case where there are positivity constraints of the form

Q j ≥ 0 ⇔−Q j ≤ 0,
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it is common to treat nonnegativity implicitly; thus, we ignore the positivity constraints and in-
stead of using the "classical" Lagrangian, we use the "modified" Lagrangian associated with
problem (2) and defined as

L(Q j,λ j) = Π(Q)−
n

∑
j=1

λ j(Q j −K j) where Q ≡ {Q1, ...,Qn}. (9)

Note that Q j , j = 1, ...,n are the variables and λ j are the Lagrange multipliers.
Any optimal order quantity Q j, for every j = 1, ...,n must satisfy the following

∂L
∂Q j

=
∂Π
∂Q j

−λ j ≤ 0 (10)

Q j
∂L

∂Q j
= Q j

 ∂Π
∂Q j

−λ j

 = 0 (11)

∂L
∂λ j

≥ 0 ⇔ Q j ≤ K j (12)

λ j
∂L
∂λ j

= λ j(Q j −K j) = 0 (13)

λ j ≥ 0. (14)

Remark 2 (Sufficiency of KKT conditions) It is shown in Proposition 1 that the function Π(Q)
is jointly concave with respect to Q j, j = 1, ...n. In addition, it is obvious that the constraints are
convex in Q j since they are given by linear functions. Thus the KKT conditions are necessary
and sufficient conditions (Bazaraa et al, 1993) of maximization of Π(Q).

4.1.2 Structure of the optimal policy

In this part, we provide some properties of optimal selection and we characterize the optimal
ordering policy. We also derive explicit expressions for the optimal purchase quantity by three
different scenarios that can faced the retailer.

The following result provides an interesting property of optimal selection.

Proposition 2 Consider the model with n suppliers. Assuming that there are two consecutive
suppliers with respective costs indexed c(i) and c(i+1) such that c(i+1) > c(i). If Q∗

(i) = 0, then
Q∗
(i+1) = 0 for i = 1, ...,n−1.

Proof 2 Assuming that Q∗
(i) = 0. Then, according to (KKT) conditions: Eqs: (10) and (11), it is

inferred that
∂Π

∂Q∗
(i)

−λ(i) < 0. In addition, from condition (14), we have necessarily
∂Π

∂Q∗
(i)

< 0.

This implies that

Y(i) <
n

∑
i=1

Qi. (15)
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Now, consider

∂Π
∂Q∗

(i+1)
= (p+π− c(i+1))− (p+π− s)F

 n

∑
i=1

Qi

 .

Since c(i+1) > c(i) ⇒ Y(i+1) < Y(i). Thus, from (15), Y(i+1) < ∑n
i=1 Qi, which means that

(p + π − c(i+1))− (p + π − s)F
(

∑n
i=1 Qi

)
< 0 ⇒ ∂Π

∂Q(i+1)
< 0. It yields according to KKT

conditions that
∂Π

∂Q(i+1)
−λ(i+1) < 0.

Finally, thanks to (11), we deduce that Q∗
(i+1) = 0. 2

Proposition 2 gives an indication on the way the retailer should follow to select suppliers. In
fact, based on the indexing of the suppliers, it is optimal for the retailer to choose firstly the
least expensive supplier and to add gradually to its selection set another suppliers, one by one
according to how cheapest each supplier is. Moreover, according to Proposition 2, we can say
also that when it is optimal for the retailer not to place an order with a supplier offering a cost
indexed c(i+1), it will be also optimal for him not to place an order with any other supplier offering
a cost greater than c(i+1). To generalize this point, we can express it mathematically as follows.

If Q∗
(i+1) = 0 then Q∗

j = 0 for all j > i+1. (16)

4.1.2.1 First scenario: Y(i+1) < ∑i
j=1 K( j) < Y(i) for i = 1, ...,n−1

We establish first the following property in Lemma 1.

Lemma 1 Consider the model with n suppliers. If supplier i is given such that
Y(i+1) < ∑i

j=1 K( j) < Y(i) for i = 1, ...,n−1, we have

n

∑
j=1

Q( j) =
i

∑
j=1

K( j).

Proof 3 The proof is made by induction. Let us first make the proof for a particular supplier
indexed i = 3 with a capacity production K(3) such that

Y(4) < K(1)+K(2)+K(3) < Y(3). (17)

From the indexing of suppliers, we deduce that (17) implies

K(1)+K(2) < Y(2) and K(1) < Y(1)

From the concavity of Π(Q), we can see that the quantities should be ordered are necessarily
Q(1) = K(1), Q(2) = K(2), Q(3) = K(3) and Q(4) = 0 and this is regardless of K(4) and so on.
Hence, we find that ∑n

j=1 Q( j) = ∑3
j=1 K( j).
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Assume that the result holds for i = k, i.e, ∑n
j=1 Q( j) = ∑k

j=1 K( j). Then, it is easy to show
for the same reasons mentioned previously that for i = k+1, it yields
Q(1) = K(1),...,Q(k) = K(k), Q(k+1) = K(k+1) and Q(k+2) = 0 and this is regardless of K(k+2) and
so on. By the principle of mathematical induction, the proof is completed. 2

Proposition 3 Consider the model with n suppliers. If supplier i is given such that
Y(i+1) < ∑i

j=1 K( j) < Y(i) for i = 1, ...,n−1, then Q∗
( j) = 0 ∀ j > i.

Proof 4 The proof is carried out by contradiction. Suppose that for a particular j with j > i, there
exists Q∗

( j) > 0. Based on Proposition 2, it is sufficient to establish the proof for j = i+ 1 > i.
Thus, based on (KKT) conditions, if Q∗

(i+1) > 0, then, due to the complementary slackness
condition (11), inequality (10) must be fulfilled as the equality

∂Π
∂Q∗

(i+1)
−λ(i+1) = 0.

On one hand, we have using (5)

∂Π(Q)

∂Q∗
(i+1)

= (p+π− c(i+1)− (p+π− s)F

 n

∑
j=1

Q j

 (18)

On the other hand, we find from the monotonicity of F(.)

i

∑
j=1

K( j) > Y(i+1) ⇒ F(
i

∑
j=1

K( j))> F(Y(i+1)) (19)

Thus, it yields using (6)

(p+π− c(i+1))− (p+π− s)F(
i

∑
j=1

K j)< 0. (20)

But, from Lemma 1 and using (20), we obtain the following inequality

∂Π(Q)

∂Q∗
(i+1)

< 0 (21)

It is obvious that (21) contradicts condition (14). Consequently, Proposition 3 is proved. 2

To interpret 3, we note first that the condition Y(i+1) < ∑i
j=1 K( j) < Y(i) is equivalent to

(p+π− c(i+1))< (p+π− s)F(
i

∑
j=1

K j)< (p+π− c(i)). (22)

where (p+π− c(i)) and (p+π− c(i+1)) are the underage costs when ordering from two con-
secutive suppliers with their cost indexed respectively c(i) and c(i+ 1) with c(i) > c(i+1). In
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addition, (p+π− s)F(∑i
j=1 K j) represents the overage cost associated with an ordering start-

ing from the least expensive supplier until supplier i

Proposition 4 Consider the model with n suppliers. If supplier i is given such that
Y(i+1) < ∑i

j=1 K( j) < Y(i) for i = 1, ...,n−1, then Q∗
( j) = K( j) ∀ j ≤ i.

Proof 5 The proof is made by induction. For a given supplier i = 1 such that Y(2) < K(1) <Y(1),
it is easy to show that Q∗

(1) = K(1) (we omit the details for sake of brevity). Let us show the proof
for i = 2 such that

Y(3) < K(1)+K(2) < Y(2). (23)

Applying (KKT) conditions with a cost and a production capacity indexed respectively c(2) and
K(2) yield

∂Π
∂Q∗

(2)
−λ(2) ≤ 0 (24)

Q∗
(2)

 ∂Π
∂Q∗

(2)
−λ(2)

 = 0 (25)

Q∗
(2) ≤ K(2) (26)

λ(2)(Q
∗
(2)−K(2)) = 0 (27)

λ(2) ≥ 0. (28)

From (27), either Q∗
(2)−K(2) = 0 or λ(2) = 0.

When Q∗
(2) = K(2) and λ(2) ̸= 0, Eqs. (24) and (25) yield

∂Π
∂Q∗

(2)
= λ(2). It remains to show that

λ(2) > 0. From the monotonicity of F(.), we get

Y(3) < K(1)+K(2) < Y(2) ⇒ F(Y(3))< F(K(1)+K(2))< F(Y(2)) (29)

Thus, it yields using (6)

p+π− c(3)
p+π− s

< F(K(1)+K(2))<
p+π− c(2)

p+π− s
.

Hence,
(p+π− s)F(K(1)+K(2))− (p+π− c(2))< 0 (30)

According to Lemma 1, the partial derivative with respect to Q∗
(2) is equal

∂Π(Q)

∂Q∗
(2)

= (p+π− c(2))− (p+π− s)F(
n

∑
j=1

K( j)) (31)

= (p+π− c(2))− (p+π− s)F(
2

∑
j=1

K( j))> 0 (thanks to (30))
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which is in agreement with condition (28). Hence, all the (KKT) conditions are fulfilled. Since
the objective function Π is jointly concave with respect to Qi (i = 1, ...,n) and the constraints
are linear, the solution Q∗

(2) = K(2) is an optimal solution.
In addition, we have by (23) that K(1)+K(2) <Y(2) <Y(1) which implies, given the indexing of

suppliers, that K(1) <Y(1). Thus, we return to the case i = 1 and following the same arguments
presented previously, we get Q∗

(1) = K(1) is also an optimal solution. Therefore, we have Q∗
(1) =

K(1), Q∗
(2) = K(2) ∀ j ≤ 2.

By the principle of mathematical induction, the proof is completed. 2

4.1.2.2 Second scenario: ∑i
j=1 K( j) < Y(i+1) for i = 1, ...,n−1

Corollary 1 Consider the model with n suppliers. If supplier i is given such that
∑i

j=1 K( j) < Y(i+1) for i = 1, ...,n−1, then Q∗
( j) = K( j) ∀ j ≤ i.

Proof 6 The proof of this corollary follows directly from Proposition 4. In fact, according to the
indexing of suppliers, ∑i

j=1 K( j) < Y(i+1) ⇒ ∑i
j=1 K( j) < Y(i). Hence, the proof is carried out

exactly as in Corollary 4. 2

Lemma 2 Consider the model with n suppliers. If supplier i is given such that ∑i
j=1 K( j) <Y(i+1)

for i = 1, ...,n−1, then Q∗
( j) > 0 ∀ j > i.

Proof 7 The proof is carried out by contradiction. It suffices to show that there is a contradiction
for a particular j > i. Thus, suppose there exists j = i+ 1 > i such that Q∗

(i+1) = 0. From
Proposition 2, it yields that Q∗

( j) = 0 for all j > i+1. Hence, thanks to Corollary 1, it yields

n

∑
j=1

Q∗
( j) =

i

∑
j=1

Q∗
( j)+

n

∑
j=i+1

Q∗
( j) =

i

∑
j=1

K( j).

On one hand, (KKT) conditions (10) and (11) give that

∂Π
∂Q∗

(i+1)
−λ(i+1) < 0. (32)

On the other hand, given that we assume Q∗
(i+1) = 0, (KKT) optimality condition (13) for Q(i+1)

implies that
−λ(i+1)K(i+1) = 0 ⇒ λ(i+1) = 0 since K(i+1) ̸= 0 (33)

Therefore, condition (32) becomes
∂Π

∂Q∗
(i+1)

< 0. (34)

However, due to the condition ∑i
j=1 K( j) < Y(i+1) for i = 1, ...,n−1, we obtain from the mono-

tonicity of F(.)

F(
i

∑
j=1

K( j))< F(Y(i+1))⇒ F(
i

∑
j=1

K( j))<
p+π− c(i+1)

p+π− s

12



Therefore, (p+π− s)F(∑i
j=1 K( j))− (p+π− c(i+1)) < 0 ⇒ ∂Π

∂Q∗
(i+1)

> 0, which contradicts

(34). Thus, Proposition 2 is proved. 2

4.1.2.3 Third scenario: ∑i−1
j=1 K( j) < Y(i) < ∑i

j=1 K( j) for i = 1, ...,n

Proposition 5 Consider the model with n suppliers. If supplier i is given such that
∑i−1

j=1 K( j) < Y(i) < ∑i
j=1 K( j) for i = 1, ...,n, then Q∗

j = 0 ∀ j > i.

Proof 8 This result follows directly from Proposition 3. In effect, since ∑i
j=1 K( j) > Y(i), it can

be derived according to the indexing of suppliers, that ∑i
j=1 K( j) > Y(i+1). Thus, we fall in the

same case presented in Proposition 3 and similar proof will follow. 2

Proposition 6 Consider the model with n suppliers. If supplier i is given such that
∑i−1

j=1 K( j) < Y(i) < ∑i
j=1 K( j) for i = 1, ...,n, then Q∗

j = K( j) ∀ j < i.

Proof 9 Since ∑i−1
j=1 K( j) <Y(i), we deduce by the indexing of suppliers that ∑i−1

j=1 K( j) <Y(i−1).
Hence, it can be shown by induction similarly to Proposition 4 that Q∗

j = K( j) ∀ j ≤ i−1 and it
is omitted for brevity. 2

Proposition 7 Consider the model with n suppliers. If supplier i is given such that
∑i−1

j=1 K( j) < Y(i) < ∑i
j=1 K( j) for i = 1, ...,n, then Q∗

(i) = Y(i)−∑i−1
j=1 K( j).

Proof 10 Let us first write the (KKT) conditions for the supplier i with a cost and capacity pro-
duction indexed respectively as c(i) and K(i):

∂Π
∂Q(i)

−λ(i) ≤ 0 (35)

Q(i)

 ∂Π
∂Q(i)

−λ(i)

 = 0 (36)

Q(i) ≤ K(i) (37)

λ(i)(Q(i)−K(i)) = 0 (38)

λ(i) ≥ 0. (39)

From (38), there are two cases to check:
Case 1: λ(i) = 0 and Q(i) ̸= K(i) then, condition (36) is reduced to

Q(i)

 ∂Π
∂Q(i)

= 0 (40)

Thus, we have two possibilities:

13



First possibility: Assume Q(i) = 0. In this case,
∂Π

∂Q(i)
should be negative (according to

condition (35)). But, we have

∂Π
∂Q(i)

= (p+π− c(i))− (p+π− s)F(
n

∑
j=1

Q j)

= (p+π− c(i))− (p+π− s)F(
(i−1)

∑
j=1

K j) (thanks to Proposition 5 and Proposition 6)

> 0 (since
i−1

∑
j=1

K( j) < Y(i) and using the monotonicity of F(.)) (41)

which violates condition (35).

Second possibility: Assume Q(i) ̸= 0. In this case,
∂Π

∂Q(i)
should be equal zero. Hence,

∂Π
∂Q(i)

= (p+π− c(i))− (p+π− s)F

 n

∑
j=1

Q j


= (p+π− c(i))− (p+π− s)F

(i−1)

∑
j=1

K j +Q(i)


= 0

which means that

Q(i) = Y(i)−
(i−1)

∑
j=1

K j

Case 2: λ(i) ̸= 0 and Q(i) = K(i). In this case, we can observe from (35) and (36) that
∂Π

∂Q(i)
should satisfy the inequality

∂Π
∂Q(i)

< 0.

However, this inequality is not true (see 43); hence, Q(i) =K(i) can not be a solution in this case.

Therefore, the optimal quantity to order from supplier i such that ∑i−1
j=1 K( j) <Y(i) < ∑i

j=1 K( j) is

Q∗
(i) = Y(i)−∑i−1

j=1 K( j). Proposition 8 is proved. 2

Proposition 5-8 indicates that under the third scenario, the retailer spreads its orders among
less expensive suppliers. Once the capacities of all less expensive suppliers are exhausted, the
retailer orders from supplier i whose role is to cover the remaining quantity required in such a
way that the optimal ordering level ∑n

j=1 Q j is exactly equal to the threshold level Yi.

14



4.1.2.4 Fourth scenario: Y(i) < ∑i−1
j=1 K( j) < ∑i

j=1 K( j) for i = 1, ...,n

Lemma 3 Consider the model with n suppliers. If supplier i is given such that
∑i−1

j=1 K( j) < Y(i) < ∑i
j=1 K( j) for i = 1, ...,n, then Q∗

j = 0 ∀ j > i.

Proof 11 The proof is exactly as presented in the proof of Proposition 5. 2

Lemma 4 Consider the model with n suppliers. If supplier i is given such that
∑i−1

j=1 K( j) < Y(i) < ∑i
j=1 K( j) for i = 1, ...,n, then Q∗

j = K( j) ∀ j < i.

Proof 12 The proof is exactly as presented in the proof of Proposition 6. 2

Proposition 8 Consider the model with n suppliers. If supplier i is given such that
∑i−1

j=1 K( j) < Y(i) < ∑i
j=1 K( j) for i = 1, ...,n, then Q∗

(i) = 0.

Proof 13 The proof is made by contradiction. Suppose that Q∗
i > 0. Hereafter, we will use Qi

to refer to Q∗
i in order to simplify the expressions. Now, it yields using (KKT) conditions (35) and

(36) for the supplier i with a cost c(i) and capacity production K(i):

∂Π
∂Q(i)

−λ(i) = 0 ⇒ ∂Π
∂Q(i)

= λ(i).

Using (KKT) condition (39),
∂Π

∂Q(i)
should be equal to zero or strictly positive where

∂Π
∂Q(i)

= (p+π− c(i))− (p+π− s)F

 n

∑
j=1

Q j


= (p+π− c(i))− (p+π− s)F

(i−1)

∑
j=1

K j +Q(i)


On one hand, if

∂Π
∂Q(i)

= 0, then

F(
(i−1)

∑
j=1

K j +Q(i)) =
p+π− c(i)
p+π− s

⇒ Q(i) = Yi −
(i−1)

∑
j=1

K j.

But, Yi < ∑(i−1)
j=1 K j ⇒ Q∗

(i) < 0 which is impossible since we suppose at the beginning that
Q∗
(i) > 0.

On the other hand, if
∂Π

∂Q(i)
> 0, then

F(
(i−1)

∑
j=1

K j +Q(i))<
p+π− c(i)
p+π− s

⇒= Yi > Q(i)+
(i−1)

∑
j=1

K j.
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But, we suppose that the optimal quantity of Q(i) is positive and ∑(i−1)
j=1 K j > 0 ⇒ Yi > ∑(i−1)

j=1 K j.

which is impossible since we study the case where Yi > ∑(i−1)
j=1 K j.

From (38), there are two cases to check:
Case 1: λ(i) = 0 and Q(i) ̸= K(i) then, condition (36) is reduced to

Q(i)

 ∂Π
∂Q(i)

= 0 (42)

Thus, we have two possibilities:

First possibility: Assume Q(i) = 0. In this case,
∂Π

∂Q(i)
should be negative (according to

condition (35)). But, we have

∂Π
∂Q(i)

= (p+π− c(i))− (p+π− s)F(
n

∑
j=1

Q j)

= (p+π− c(i))− (p+π− s)F(
(i−1)

∑
j=1

K j) (thanks to Proposition 5 and Proposition 6)

> 0 (since
i−1

∑
j=1

K( j) < Y(i) and using the monotonicity of F(.)) (43)

which violates condition (35).

Second possibility: Assume Q(i) ̸= 0. In this case,
∂Π

∂Q(i)
should be equal zero. Hence,

∂Π
∂Q(i)

= (p+π− c(i))− (p+π− s)F

 n

∑
j=1

Q j


= (p+π− c(i))− (p+π− s)F

(i−1)

∑
j=1

K j +Q(i)


= 0

which means that

Q(i) = Y(i)−
(i−1)

∑
j=1

K j

4.2 Sustainability problem
In this section, we present the second stage represented by the sustainability problem where
a supplier evaluation procedure is established in order to select appropriate suppliers who are
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the best in terms of preserving green and social aspects. As mentioned earlier, we use in the
first step, fuzzy TOPSIS to rank potential suppliers on the basis of two sets of criteria: social
and green. In the second step, top management (preferably) uses AHP to assign importance
weights to each of the two sets of criteria based on the organization’s strategy. Consequently,
the potential supplier considered very poor in terms of green criteria and very good in terms
of social criteria will not be ranked among the best alternatives if top management decides to
give more importance to the set of green criteria. This approach is more general and provides
more flexibility for decision makers in highlighting the importance of one set over the other
[CIE2017cheaitouhamdan, 2015, 2017(b)].

Hereafter, we present the sustainable model which aims to maximize the green function
denoted by WST . Moreover, we show that this function is jointly concave with respect to Qi. In
addition, we present the structure optimal policy for the sustainable model without details since
it will follow the same structure already derived for the cost model.

4.2.1 Sustainability model and optimal ordering policy

The sustainability problem is to find the quantity which maximizes the green value WST where

WST (Q) = ∑n
i=1 wGS

i ×Qi +wc
∫ ∑n

i=1 Qi

0
D f (D)dD+wc

∫ ∞

∑n
i=1 Qi

(
n

∑
i=1

Qi) f (D)dD

− wGS
∫ ∑n

i=1 Qi

0

 n

∑
i=1

Qi −D

 f (D)dD (44)

− πc
∫ ∞

∑n
i=1 Qi

D−
n

∑
i=1

Qi

 f (D)dD.

The retailer needs to solve the following optimization problem

maxWST (Q) (45)

subject to 0 ≤ Qi ≤ Ki for all i. (46)

The partial derivatives of WST with respect to Qi (i = 1, ...,n) are

∂WST (Q)

∂Qi
= (wc +πc +wGS

i )− (wc +πc +wGS)F

 n

∑
i=1

Qi

 . (47)

Setting the first partial derivatives (47) equal to zero, we obtain

F

 n

∑
i=1

Qi

=
wc +πc +wGS

i
wc +πc +wGS (48)
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which implies that
n

∑
i=1

Qi = F−1

wc +πc +wGS
i

wc +πc +wGS

 . (49)

Thus, we can define the following threshold level related to the sustainability problem

Y GS
i = F−1

wc +πc +wGS
i

wc +πc +wGS

 . (50)

Similarly to the cost problem, we have suppliers are indexed such that

Y GS
(n) < ... < Y GS

(i) < ... < Y GS
(1) ,

since Y GS
i = F−1

wc +πc +wGS
i

wc +πc +wGS

 and suppliers are indexed from the highest to lowest per-

formance level in terms of green and social criteria such that

wGS
(n) > ... > wGS

(i) > ... > wGS
(1), (51)

Next, we will show that the objective function WST (Q) is jointly concave with respect to Qi.

Proposition 9 The expected objective function WST (Q) defined in (44) is a jointly concave func-
tion with respect to Qi, i = 1, ...,n.

Proof 14 The Hessian matrix of WST (Q) with respect to Qi (i = 1, ...,n) is the n×n matrix given
by

HWST (Q) =−(wc +wGS +πc) f (
n

∑
i=1

Qi)Jn (52)

where Jn is (n×n) matrix of ones.

For each vector
V = (V1, ...,Vn) ⊂ IRn,

it yields

VT
(

HΠ(Q)
)

V =−(wc +wGS +πc) f (
n

∑
i=1

Qi)(
n

∑
i=1

Vi)
2 < 0.

Consequently, the matrix HWST (Q) is semi-definite negative; thus, the objective function WST (Q)
is jointly concave with respect to Qi (i = 1, ...,n), which completes the proof.

2 According to Proposition 9 and to the fact that the constraints are linear,
the optimal solution can be found using (KKT) conditions. Hence, similar as in the cost problem
where (KKT) conditions are applied ((10)-(14)), we can apply similarly these conditions the
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sustainability problem with the necessary modifications (which is by replacing in the conditions
the function Π by WST ).

Concerning the optimal ordering strategy for the sustainability problem, it can be seen from
(50) that the threshold level Y GS

i related to the sustainability problem follows the same structure
of the threshold (6) related to the cost model; in fact, by a simple comparison, we can notice that
p is replaced here by wc, π is replaced here by πc and ci is replaced here by wGS

i . Thus, based
also on what we just said previously on the optimality conditions of (KKT), we expect naturally
that the structure of the optimal policy for the sustainability model follows the same structure
already detailed for the cost model. Therefore, we can imitate the structure optimal ordering
policy done for the cost model with the necessary modifications. Details are omitted for brevity.
However, to make it more clear, we summarize in Table 2 the retailer’s optimal ordering policy
for the sustainability model:

Table 2: Retailer’s optimal ordering policy for the sustainability model
Case Optimal solution

Q∗
( j) = K( j) ∀ j ≤ i and

Y GS
(i+1) < ∑i

j=1 K( j) < Y GS
(i) Q∗

( j) = 0 ∀ j > i

Q∗
( j) = K( j) ∀ j ≤ i and

∑i−1
j=1 K( j) ≤ ∑i

j=1 K( j) < Y GS
(i+1) ≤ Y GS

(i) Q∗
( j) > 0 ∀ j > i

Q∗
j = K( j) ∀ j < i,

∑i−1
j=1 K( j) < Y GS

(i) < ∑i
j=1 K( j) Q∗

(i) = Y GS
(i) −∑i−1

j=1 K( j) and
Q∗

j = 0 ∀ j > i
Q∗

j = K( j) ∀ j < i,
Y GS
(i) < ∑i−1

j=1 K( j) < ∑i
j=1 K( j) Q∗

j = 0 ∀ j ≥ i.

4.3 Bi-objective integer linear programming model
In this section, we present the third and final stage where the outputs of the first and second
stages serve as inputs for a single-product bi-objective optimization model, which maximizes the
expected profit (and thus minimizes the suppliers’ cost) and maximizes the preference weights
of the selected suppliers. The model is solved using the weighted comprehensive criterion
method (See CIE (cheaitou page 2)—>Dehghani, Esmaeilian, Tavakkoli- Moghaddam, 2013).

4.3.1 Bi-objective model and solution approach

The bi-objective optimization model consists of two objective functions. The first objective func-
tion aims to maximize the expected profit Π defined in Eq. (2). The second objective function
aims to maximize the green function WST defined in Eq. (44). Thus, the bi-objective model is
defined as follows:

max Π (53)

max WST (54)
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subject to 0 ≤ Qi ≤ Ki ∀i = 1, ...,n (55)

In order to solve the bi-objective model described previously, we can choose between many dif-
ferent scalarization techniques such that the weighted sum method [reference], the ε-constraint
method [reference], the comprehensive criterion method [reference], or the weighted compre-
hensive criterion method denoted by (WCCM) [ref,ref]. In this paper, we adopt the WCCM be-
cause of the simplicity of its implementation and its efficiency, in terms of the number of Pareto
solutions it can provide (Kamali et al., 2011; Marler, Arora, 2004). We will not detail here all the
steps of the WCCM (we invite the reader to see (HamdanCheaitou) for more details) and we will
only present the final normalized objective function which will be minimized subject to the same
constraints of the two single objective functions problems. Finally, it infer

min Z = 100×

Π∗−Π
Π∗ ω1 +

W ∗
ST −WST

W ∗
ST

ω2


= 100×

−ω1

Π∗Π− ω2

W ∗
ST

WST +ω1 +ω2

 , (56)

subject to 0 ≤ Qi ≤ Ki ∀i = 1, ...,n (57)

where ω1 and ω2 are the relative weights that the decision maker can set with ω1 +ω2 = 1. In
addition, Π and WST can be substituted in (56) by their respective expressions (see Eqs. (2)
and (44)).

It is very interesting to note that for a given value of ω1 and ω2, the function Z is a linear
combination of Π and WST . This implies that

• The function Z is jointly concave with respect to Qi since it is the sum of two functions
jointly concave (thanks to Propositions 1 and 9).

• The partial derivative of the function Z is a direct consequence of Eqs. (5) and (47) and
this is using the linearity of differentiation. Hence, for a given value of ω1 and ω2, the
partial derivative of Z with respect to Qi can be written as

∂Z
∂Qi

= −ω1

Π∗
∂Π
∂Qi

− ω2

W ∗
ST

∂WST

∂Qi

= −ω1

Π∗

(p+π− ci)− (p+π− s)F

 n

∑
i=1

Qi




− ω2

W ∗
ST

(wc +πc +wGS
i )− (wc +πc +wGS)F

 n

∑
i=1

Qi


 (58)
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Rearranging (58), it yields

∂Z
∂Qi

=

(−ω1

Π∗ )(p+π− ci)+(− ω2

W ∗
ST

)(wc +πc +wGS
i )


−

(−ω1

Π∗ )(p+π− s)+(− ω2

W ∗
ST

)(wc +πc +wGS)

F

 n

∑
i=1

Qi

 (59)

Setting (59) equal to zero, we derive

F

 n

∑
i=1

Qi

=

ω1

Π∗ (p+π− ci)+
ω2

W ∗
ST

(wc +πc +wGS
i )

ω1

Π∗ (p+π− s)+
ω2

W ∗
ST

(wc +πc +wGS)
(60)

From (60), we can define the following threshold related to the bi-objective problem

YWCCM
i = F−1


ω1

Π∗ (p+π− ci)+
ω2

W ∗
ST

(wc +πc +wGS
i )

ω1

Π∗ (p+π− s)+
ω2

W ∗
ST

(wc +πc +wGS)

 (61)

It is worth noting that Equation (61) has the same structure as the single objective sub-
problems thresholds, which allows to use the same optimal policy structure found for the single
objective problems for this bi-objective model. Moreover, it is also worth noting that the sorted
YWCCM

i from the largest value to the smallest value corresponds to the best combination of
cost/profit and sustainability value.

5 Numerical example
In this example we provide a simple numerical example to show the way the model works. This
basic numerical example considers five suppliers with the following parameters:

Table 3: Input data of the numerical example
Supplier i Ki ci wi

1 250 29 0.06
2 200 22 0.04
3 200 16 0.1
4 900 32 0.6
5 1200 20 0.2

Moreover, the other parameters are as follows: p = 75, s = 10, π = 20, wGS = 0.5, πc = 0.3,
and wc = 0.2.

For the demand, we assumed a normal distribution with a mean µ = 1000 and a standard
deviation of σ = 300.
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The single objective optimal solution are as follows: 50766.2 and 364.352 for the optimal
cost and sustainability objective functions respectively. Moreover, the corresponding thresholds
and optimal quantities are as follows:

Table 4: Optimal solution of the cost and sustainability sub-problems

Supplier i Yi Y GS
i Qi of the cost sub-problem Qi of the sustainability sub-problem

1 1228.1 1022.58 0 0
2 1322.51 1015.05 0 0
3 1441.43 1037.7 200 0
4 1194.09 1252.49 0 900
5 1356.05 1076. 1156.05 176.004

For the bi-objective problem, we varied the weights ω1 and ω2 from 0.2 to 0.9 and from
0.8 to 0.1 respectively with a step of 0.1. The obtained Pareto optimal solutions and their
corresponding variation are shown in Table 5.

Table 5: Pareto optimal solutions
ω1 ω2 Z (%) Optimal ordered quantities (Qi)

0.2 0.8 5.61064% 0, 0, 0, 900, 205.426
0.3 0.7 8.29667% 0, 0, 0, 900, 222.529
0.4 0.6 10.8859% 0, 0, 0, 900, 241.681
0.5 0.5 13.361% 0, 0, 0, 900, 263.378
0.6 0.4 15.6996% 0, 0, 0, 900, 288.325
0.7 0.3 17.521% 0, 0, 200, 0, 1017.57
0.8 0.2 11.9848% 0, 0, 200, 0, 1052.78
0.9 0.1 6.17806% 0, 0, 200, 0, 1096.92

This numerical example shows the flexibility that this framework can offer to the purchasing
departments’ decision makers in choosing the best suppliers and their corresponding quantities
based on the importance that they give to the objective functions.

6 Conclusion
Including sustainability aspects in the decision making processes of most of the businesses has
become a necessity. Logistics as a major contributor of green house emissions also should con-
tribute in this regard and as part of logistics inventory systems also are expected to contribute in
reducing the negative impacts of business on the environment and the society. This paper con-
tributes in this direction by proposing a bi-objective single-product multiple-supplier newsvendor
model in which profit and the sustainability value of the purchased items are optimized. First,
each sub-problem is solved and its optimal policy is characterized. The optimal solutions and
then used to characterize the optimal policy of the bi-objective model. The obtained optimal
policies are based on a threshold structure and can be used very simply. A numerical example
is solved to show the effectiveness of the proposed approach. The results show the flexibil-
ity that this approach offers to the decision makers in selecting the best suppliers and their
corresponding quantities.
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